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THE EFFECTIVE THERMAL CONDUCTIVITY OF A SUSPENSION™
A.M. GOLOVIN and V.E. CHIZHOV

The effective thermal conductivity of an inhomogeneous suspension is
considered for the case of low and moderate volume densities of randomly
distributed spherical particles. A mathematical apparatus of convolutions

of the A-functions is developed enabling closed formulas to be derived for
the dipole moment of a particle in the system. An exact expression for

the dipole moment averaged over the ensemble that is accurate to terms

of the order of the square of the particle density is given for a spatially
homogenecus distribution of particles. The effective thermal conductivity
of the suspension is calculated to the same approximation. It is shown
that when the region occupied by the spherical particles represents an
ellipsoid of revolution and the temperature gradient away from this

region tends to a given constant value, the effective thermal conductivity
becomes independent of the ratio of the ellipsoid semiaxes, i.e. independ-
ent of the form of the region occupied by the system.

The effective thermal gonductivity of a homogeneous suspension was studied earlier in
/1=7/. Maxwell calculated the effective electrical conductivity of a mixture to terms of
the order of the volume concentration of the spherical inclusions. The effective thermal
conductivity is easily calculated to the same approximation, since the problems of determining
the thermal and electrical conductivity are mathematically equivalent. The same problem is
encountered in computing the dielectric permeability of two-phase mixtures /8/ and in determin-
ing the effective shear modulus of a homogeneous and isotropic composite material /9, 10/.

A cell model was used in /2-5/ to compute the effective thermal and electrical conduct-
ivity of suspensions at moderate and high particle densities. It was assumed that the particle
was situated at the centre of a spherical cell, and the medium outside it possessed the
required effective thermal conductivity. The drawback of this method lies in the arbitrariness
of the choice of the cell boundary. A method of calculating the effective thermal conductivity
of the media with spherical inclusions situated at the. nodes of various types of cubic lattices
at moderate particle densities was given in /6/, where a review of the earlier investigations
concerned with computing the thermal conductivity in analogous media at low volume densities
was also given. The effective thermal conductivity of ahomogeneous suspension with randomly
distributed particles was calculated to terms of the order of the square of the particle
density in /7/, using the method given earlier in /11/.

1. Formulation of the problem. Let a region of volume V¥ containing N identical
spherical particles of constant thermal conductivity =’ & exist in an infinite medium filled
with a material of constant thermal conductivity %x. We assume that away from V a steady
temperature distribution is given with constant gradient k. The temperature field T will
depend, at any point r, on the position of the particle centres determined by the radius
VeCtors ¥, ..., I'ny. We shall denote the complete set of these radius vectors by Ry We will
introduce an unconditional correlation function [ (Bx) such that

3 I (Rw) dRy

denotes the probability of finding the particle centres, respectively, within the small volumes

tfrh...,d%w beside the points ¥, ..., ty. We introduce the conditional correlation function
fwer (Ry.ys ty) defined in such a manner that

—‘7;‘:1- fre1 (By-1ivn)dRy -y
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denotes the probability of finding the centres of N — 1 particles within the volumes d®ry,
... d%y., beside the points 1y, ..., Ty-1 respectively, provided that the centre of the N-th

particle is at the point ry.
In accordance with the above definitions, the correlation functions have the following
properties: J

—N-SfN(RN)dsz=1.

VN‘I S frn-1(Ry-y;en) @By =1

fo () = fyes (RNg; *N) F1 (EN)
F—1 (By-yi tN) = - (Ry-g; Tn-1 t) f1 (En-1s TN)

and fyx(Rny), fy-1 (BN-yi tn)s fN-2 (RNg3TN-1, ty) are symmetric functions of the arguments Ry, Ry
and ARy., respectively. The mean number of particles per unit volume n(r) is connected with

the one-particle function by the relation

n(r) = (N/V) f (v)

For the spatially homogeneous distribution we have

1, V
fl(r)::{()', :ZV

The mean temperature gradient (over the ensemble) and mean heat flux in the system have
the form

G ()= { f (Rw) VT (r. Rw) d Ry 1.4
F ()=~ { f (R %VT (r, Rw) dRy
® =%'0(r, By) +x [1 — 0 (r, Ry))

N

O Ay =Y ne—lr—nD: n@={y 77
=1 ]

The tensor %,% connecting the components of the averaged vectors of the heat flux F and the
temperature gradient G

3
Fo =3 »3gP
B==1

is called the tensor of effective thermal conductivity of the suspension. Generally speaking,

the tensor x,*® is not spherical /12/ but, as follows from the results of /7/ and of the
present paper, in the case of spatially homogeneous system with randomly distributed inclusions
the effective thermal conductivity is a scalar quantity: x,* = %,0%. Below we shall compute

%y to terms of the order of ¢* inclusive {¢ = %na®N/V is the volume density of the particles).
We establish that, although the vectors F and G depend on the form of the region occupied by
the suspension, the effective heat conductivity x, within the approximation stated can be
Jetermined in terms of %,% and ¢ only. From (l.l) it follows that

N
F—xG =235 Y {jy Ry n(@a—le—r|) V7" (v, Br) dRu
v 1=l
Here and henceforth T’ will denote the temperature at the point r within the particle.
If the observer point r is situated outside the region occupied by the particles, then the
temperature will be denoted by T.
Using the properties of the correlation functions, we can obtain

FoxG=N2Z20dRvy | flw) X fyca (B o) VT (6 R diew (1.2)
fr—ryl<a

and a formula analocgous to (1.2) was obtained earlier in /7/.
Let us place the coordinate origin at the centre of the N-th sphere, and denote by RN_l

the set of vectors #', ..., Py where ;' =7r; — vy, and the difference ¢ —ty by Xxy.
If the particle density distribution in the system is almost spatially homogeneous, then
we can restrict ourselves to the expansion
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3
N o Do R
or-ory

filr—xp)=f ) —xaV1(r) + Z -—;,—x;v“xyﬁ
o, f=1

fi(®)

The temperature gradient at some point of the space fixed relative to position of the
particles, is obviously independent of the choice of the origin of coordinates, therefore we

have ] .
VI'(r, Ry)= _0?; T* (x3v Rp-)

With reference to the function fy., it is assumed that it is determined by the relative
positions of the particles themselves, i.e.
Fr- (fy-g; TN} = -1 (R 0)
Then relation (1.2) can be written in the form

F—xG =N 232 dR;’“,NL [ho—

(1.3)

3 3
3f1(r) i A (r)
2%1“7;- + -5 Z ZyzN® -—-—’—r] X

Clsm}

ar%or
o, pml

fives (Rivs; ) = T (s Rivr) &'y
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AT =0, AT/
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sphere)

=0 {i=4,...,N)

(1.4)

T==T/ lt—rt;l=a

VT ek, v, (k]| =1

The temperature is a harmonic function and can be represented (apart from an arbitrary
constant omitted from the expression given below), in the neighbourhood and within the volume
of the i-th particle, in the form of a series in terms of the spherical volume functions

T _ (k"'i) + (k.x‘) + 2 Diax.-.mpAtﬂt..‘ap -I- 2 2 D?‘..GPA?L..GP (l . 5)
p=1 Joi pemi

Ty = (ko) + (k-x;) + Zp?x...up (:;.)11&1 A:n...up +
=l ’
hood
Z D;t:...a
j=t pes) R
[ 3 & 4
(Ai T oxpr. . 027 i MEL=Te & zlx“)

[~ N3

P Aj P

Here z® are Cartesian coordinates of the vector xi, D:‘""“p are multipolar moments of the

i-th particle are to be determined. The repeated Greek indices ay,...,a, in (1.5) and further
expresions, taking the value of 1, 2, 3, denote summation. Representing the solution of
problem (1.4) in the from (1.5), ensures that the temperatures T and T, are equal at the
surface of the i-th particle.

We note that the expansions (1.5) deviate from the standard series in spherical functions.
As we know /13/, for fixed p, 3P functions A{*"®r contain only 2p + 1 linearly independent

functions. To avoid any ambiguity in the determination of the multipolar moments Df‘“"“‘p,

1) D!ila-..ﬂ.p

It can be shown that when the above condi-

we assume below that they satisfy two conditions: are symmetric over any pair of

upper indices; 2) the contraction Df‘“'“"'zﬁﬁ = Q.
tions hold, the moments are defined uniquely.
D?x...ﬁp

2. Determination of dipole moment. To determine the multipole moments

we require that the functions (1.5) satisfy the condition of continuity of the normal heat
flux component at the surface of the iI-th particle. With this in mind, we use the analyticity

. . g e G, , . . . .
of harmonic functions and expand A; P near the i~th particle in a series in powers of z;%
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AP = A 1’+§ i btz (2.1;
g=1
Voo, & 1
Ai; == —— P P e P J—
& ey T T T =l

Next we take into account the fact that the convolution of the tensor AL ™% over any

two upper indices is equal to zero and, that A?‘"’ % has the form

) 2g—1 X 8
A “x(_m_(%)ﬂ_xgmxiurm (2.2)
1

where the terms omitted contain at least one Kronecker delta. The temperature T near the i~
th particle can be written, taking (2.2) into account, as follows:

T=(ker)+(ex)+ Y, Y D5 PAG T + (2.3)

3951 pa=i
= (—1)* et N Gt IS ool SN Gy, Caett
Y Xy DA DAL e} DA
Q=] ot pres=l p=1

Using the formulas

a3 Br...B, g1 ﬂ‘...fsq
n. o il « - el A
¢ A Ay @
a Pran.B BryeB
n =2l = A

1

which follow from the homogeneity of the A-functions, we can obtain the following infinite
system of equations connected the multipolar moments of the particles in the system:

DPP1 = (— i dgamet skt 5 3 ) Df O rAL e @4
j=i pa=l
Kq'— 4 H—u q:.-i,iZ,..-

@— g~ DI o T @+ )%

Brown in /l4/ studied an analogous problem, restricting himself to the dipole terms and
neglecting the influence of the higher-order multipoles on the magnitude of the dipole moments.

If |A | <€ 1, then the soluiton of (2.4) can be obtained by an iterative method. When
carrying out the iterations the following type sums will appear:

2. 23, 2T ...
i i need i meej nwm
It should be noted that in averaging the double sums over j and n with the help of the
conditional correlation function fy.; {(By-p¥:), we obtain terms proprotional to ¢* provided

that ns&i. Therefore, if we limit ourselves, in the course of computing the multipole moments,
to terms of the order of ¢, then only the texrms i = n will have to be retained, An analogous
situation arises when multiple sums are averaged. Thus in averaging the triple sums over j,

m, n, we must limit ourselves to terms with m=1in = j only. Taking all this into account
and carrying out the iterations, we obtain

DI Aaaies — (— 1) ik x @k B [AGC 4 3 My (2.5
I Tzl

BrB b ~ P Bto) [
M= 5 S Ay gt o ALNPARIE A
pr= Pp=1

In deriving (2.5), we have used the symmetry of the function Aj;¥ % to interchange of

the upper idices and the fact that the function acquires the multiplier (=-1)" when the lower
indices are interchanged. 1In addition, to redwce the length of the expressions for convolu-
tions of the A-functions, we will use the following notation:

Vieo VpEterely | Eheni8 &
A{(}P)(q) Aﬁ‘}"‘ =Ay P A q

To obtain the numberical results we must have a formula for convolution over the repeated
upper Greek indices of the A-functions in the expression for My in (2.5). With this
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in mind, we shall utilize certain properties of the A-function. We have the following
relation:

(ﬁl...apﬂx...ﬁq ?h..ﬁqp._ (p+ o) (2¢ — 1) l: 048 6
Ay Ay T =— pirigt p+T M "+ (2.6)
['3
2 1 Q... Ti;
R ek Y ,,] (ni,.u= ] )
rii 'ij
To prove it, we write the second function in the form
Ba...B 0 Ba...p d [(=D@g—1 g _
A T = i = —ar—‘i;j—[———-;’;qz—rﬁ...rﬁq-f-.. =
e g— 1l B By
—0"?[ T e . B L I mgfnl
™en]

Terms omitted contain at least one Kronecker delta and offer no contribution to convolu-
tion with the first function of (2.6). We can further show that the following relation holds:
ar...o. p+1 a.c
Ay P = — Ay R

T i

Consecutive application of this formula yields

ar  Opps-Ogbiofy (= 1P (@)  Pu.p
i .- - hPAG ap AT
and we have
q
A;’j‘"'“pﬁ""ﬁq/\f;"'“‘z" S ) I 2 i LU

r?].*‘ 2

[qA;ll...aP&...ﬂq.lll."P‘ . nﬂq_l —(2q+ 1)Aal...¢pﬂl...ﬂq”b‘ nf‘lni ] _

(p+qn =it A e,y
Gt [m, i oD et ) -85 ]
from which (2.6) follows. The following relations also hold:
e TN (2:;?:;1)!! (2.7
%
vBy, Br B P+ D (Ep— 1
A PoAl "_.—-(_—TLH_,__ni,.a

@fpr...Bp , BBy (p+2)! (2P — DI a8
AP Popls = Ajj

and are proved in a similar way.

Below we shall need an expression for the dipole moment D which can be found from. (2.5)
with ¢=1. Using (2.6) and (2.7), we can obtain the following fundamental formula which
yields the result of convolution of an arbitrary number of A-functions:

(®,)8
A?,-(p')Ai(]P')(p') . Aij“ —

(Pr+ Pl .. (Ppy+ P, 2P — DL L. (2P, — 1N
2(Bet e - (g + DT s
{(—=1ps... p,.6°‘“ +U=1"pr...pn+
201+ 1) .. . (Pn + D] 00 f)
3. Calculation of the effective thermal conductivity. The results obtained
enable us to determine the integrals over the volume of the N-th particle appearing in (1.3).
Indeed, using expansion (2.3) near the particle with index i=N and taking into account the

mutual orthogonality of the functions ANBV with different numbers of upper indices, we can
obtain

(2.8)

aT r
S 62: daIN— Eﬁ nN“TNdS= é ny* I-(k'XN)—

xy<a *y=a xpN=0

@Y ZA 4P DI CPA NS & DAPAN las=

=N p=1

ERRT TS W W it A SRy

}=N p=1
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Further, using (2.4) we can obtain

T o' ;
R L
<

We can evaluate the following integrals by similar methods:

9Ty’ 8 1
R N

ry<a

Ty
Tn%znd 7 ¥y =al § nx*nabny T nd S —
xy<a S
TN (B“VnN‘B -+ GW?IN“) TN' d‘zN =
xy<e
2 o 1

a § [YLN nnﬂnN\'—?(vS“?nyﬁ -+ nNGGB\')] TdS =

zy=a

— 5 (- —1) 8=8Dy" + .

In evaluating the last integral, higher—-order terms proporticnal to DY were omitted.
Substituting these expressions into (l1.3), we arrive at the following result:

P = A N ) [~ 1) (a5 1) DA™ — (3.1)

Ho-a) ]

b
DNy = ier § @Ry sfvas (Biness 0) D (Riv-)

In computing the averages <Dy*> and <D¥> to terms of the order of the mean volume
density ¢ = Y4ynlNa®/V inclusive, we will use the representation of the correlation function
fi{r; 0} in the form
Lin w0 =n{lr|—2a)fi ()

Let us further limit ourselves to the case of a spatially homogeneous distribution.
Then the averaging and use of (2.5), (2.8) yields

n=s}

(DN*y = Mad [k= + Mya%kB _ZN A%y 4 cMkeB], B = i by 3.2)
i

| 3 plp+1) * —%
by TZ & mEp+ix

-+ (0 — =)
b= Tp;;‘m(p--l)l (g— 1) [px' + (2 + 1) %} {gx’ + (g -+ 1) x}

- (el (Ppg + )
e cee
g = e+ . (B + 11

1." U lpn{2p‘—~ Hil. .. (2p, — D

[2(p+...+p,)+n] Aoy
Upe+1).. P+ 1) —(—1)"p1--.Pa} n>3

X

Using the properties Qf the correlation functions, we can reduce the process of computing
the averages of the sum AN:J to computing the integral over the volume V¥, excluding the

region |ryy | < 2a
<; A = d‘l'niANﬂ (3~3)

When the region occupied by the particles with constant volume density ¢ is an ellipsoid,
evaluating the last integral is equivalent to solving the well-known problem of electrostatics,
of calculating the depolarizing field /15/. If two semiaxes of the ellipscid are equal while
the third one represents the axis of symmetry and is directed along the vector k, then

By ARD =S —Ko)ke

j=N
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Here *%/;nKp is the depolarisation coefficient equal, in particular, to 4J,n for a sphere,

to 4m for a thin plate, and to O for a circular cylinder.

There effective thermal conductivity is obtained in /7/ for an infinite medium. Condit-
ional convergence of the integrals representing the mean dipole moment means that the computa-
tions can be reduced, in accordance with the method described in /4/, to calculating the
finite difference between two, conditionally converging integrals. 1In the present paper the
problem does not arise, since the particles are distributed through a finite volume of the
space.

It can be shown that we have the following expression for the homogeneous and isotropic
distribution apart from terms of order O (c¢):

D> =0 (3.4)

We prove this relation using the formula (2.5). We see that the guantitites Algﬁa in
(2.5) have the form

M — 4, (n) AP - Ay (n) n 2AR

and integration over the angular part yields, by virtue of the orthogonality of the A-func~
tions with the same indices, (3.4).

To compute the effective thermal conductivity we require, in addition to (3.1), an expres—
sion for the mean temperature gradient in the system. If the region occupied hy the particles
represents an ellipscid, as was assumed when calculating the dipole mcment, then

G(r)-—:k————KD(DN) =k—cMKp[l+ chi(1 — Kp+B)]k (3.5)

Substituting (3.5) into (3.1) and taking into account (3.2) and (3.3), we arrive at the
following expression for the three-dimensional homogeneous distribution corresponding to the
case f,=1:

F=xG=uG—c(h —1)® —x)[1 +cA(1 — Kp + B)lk

Thus the effective thermal conductivity, up to and including terms of order ¢% is equal
to =% —cC( —n) (A — 1) — A (' —%) (M — 1) (1 + B)

The above results show that the effective thermal conductivity is independent of the form
of the region occupied by the particles up to andincluding terms of order ¢*, slthough the
temperature and heat flux averaged over the ensemble depend not only on the volume density,
but also on the form of the region occupied by the suspension.

) The effective thermal conductivity is identical with the Maxwell formula to terms propor-
tional to c¢. Below we given the results of calculations of the coefficient accompanying ¢?
in the expression x./x (the number on the left corresponds to the number of first terms taken
into account in B)

%= () 8.1 0.5 2.0 5.0 50 )
1 0.583 .447 0,110 0:207 1.20 3.64 4,17
3 0.587 0.450 0.110 0.208 1.23 3,82 4.39
5 0.588 0,450 0.110 0,208 1.23 3.86 4.45

The results of the computations carried out earlier in /7/ by another method agree with
the values given in the last column except for the last two values (according to /7/ those
values are equal 3.90 and 4.51 respectively).

It is clear that the series for determining the coefficient of ¢* converges fairly rapidly
except in the case when %'3»%. Restricting ourselves to two terms of the series only, we
find that the error in the value of the coefficient of ¢! does not exceed 5% for any value of
the rati of x' and =«.
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EFFECT OF HYDRODYNAMIC INTERACTIONS BETWEEN THE PARTICLES ON THE
RHEOLOGICAL PROPERTIES OF DILUTE EMULSIONS ™

A.Z. ZINCHENKO

The form of mean stress tensor in moncdisperse emulsions is studied in the
second-order approximation with respect to the volume density of the
particles, for a number of flows which are of rheological interest. It

is shown how the particular features of the two-particle interaction
between liguid spheres, especially the non-zero differences between the
normal stresses in shear flows, give rise to non-Newtconian properties of
the emulsion.

We know /1, 2/ that in the case of the second-order approximation
with respect to the volume concentration of the suspended disperse phase
the mean stress tensor is expressed in terms of two-particle interactions
in a linear velocity field, and of the binary correlation function. The
binary function is formed under the action of the macroscopic flow.
Specific results, however, were obtained only for suspensions and rigid
spheres /1, 2/. The present paper deals with the structural model of
fluid spheres of equal radius, with hydrodynamic and "contact" interactions.
A number of fundamental deviations from /1/ exist in the case of rheologic-
ally strong flows, since drop flocculation-deflocculation processes must be
considered (i.e. the formation and disruption of aggregates). A strict
analysis is given within the framework of the model, of the effect of
these processes on the binary correlation function. A connection between
the model of "contact” interaction and the result of the D.L.V.0. theory
/3=5/ is considered. Numerical values are obtained for the Trouton
viscosity in strong rheologically axisymmetric expanding flows., The
differences in normal stresses in a strong shear flow are obtained and an
approximate estimate is given for the shear viscosity and compared with
experimental data /6/. A method given in /2/ is used to compute the
effective viscosity of the emulsion in arbitrary, rheologically weak flows
in which Brownian motion predomaintes. Considerable use is made of the
exact computational methods and asymptotic representations of hydrodynamic
functions determining the pairwise interaction of fluid spheres /7-9/.

1. A general expression for the mean stress tensor. Consider a locally homo-
geneous monodisperse emulsion of drops of radius a and viscosity p' freely suspended in a

*prikl.Matem.Mekhan.,48,2,282~292,1984



